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Abstract. A new presentation of the geometric formalism in R x TQ of the time-dependent 
Lagrangian systems is given. The formalism is used to prove some properties of the equations 
determining the Euler-Lagrange vector field X,, for relating the theory with the time- 
independent case and for studying the time-dependent Lagrangian inverse problem. 

1. Introduction 

Nowadays it is known that symplectic geometry is the appropriate geometric setting 
for the description of autonomous systems in both the Hamiltonian and Lagrangian 
approaches (see Abraham and Marsden 1978, Marmo et a1 1985, and references 
therein). Nevertheless, the Lagrangian formalism seems to be not so straightforward 
as the Hamiltonian is, because the symplectic structure is not intrinsically defined, but 
it is L-dependent, i.e. it must be constructed using the Lagrangian function. Time 
dependence introduces new problems, mainly because one must work in odd- 
dimensional manifolds. This difficulty is solved by exchanging symplectic forms for 
contact structures. As a consequence of this, for determining the Euler-Lagrange vector 
field XL it will be necessary to supplement the contact equations (which determine 
not a vector field but a distribution) with some additional condition. 

Recently (Carifiena and Rafiada 1989) a new presentation of the geometric theory 
of time-dependent systems has been given for the Hamiltonian formulation. The 
purpose of this paper is to carry out a similar approach for the time-dependent 
Lagrangian dynamics. Notice that, although the Hamiltonian formulation can be 
considered as a previous result, the Lagrangian theory will be directly studied without 
making use of it, i.e. the theory will be developed in the Lagrangian evolution space, 
R x TQ, without making use of the (inverse) Legendre transformation. 

2. Evolution space 

Let us denote by Q the configuration space of a Lagrangian dynamical system with n 
degrees of freedom and by { q i ;  i = 1, . . . , n} the local coordinates. Then the evolution 
space of the system will be R x TQ (TQ is the tangent bundle of Q) and the Lagrangian 
of the system will be a function L : R x TQ 3 R. 
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3476 M F Ran'ada 

The natural coordinate on R will be denoted by t ,  and T, : R x TQ -+ R and r2: R X 

TQ-, TQ are the two projections onto R and TQ, respectively (for the definition of a 
time projection in a more general manifold see Lichnerowicz (1976)). The manifold 
R x TQ also possess other vector bundle structures such as r2 : R x TQ -, Q defined by 
r2 = TQ 0 r2 where TQ : TQ -+ Q is the natural bundle projection and T : R x TQ + R x Q 
defined by 7 = IdR x TQ. 

2.1. Fundamental objects in R x  TQ 

As for the autonomous case, the mathematical formalism for the time-dependent 
Lagrangian dynamics can be developed mainly using two approaches. 

(i)  The 'indirect' approach consisting of the study of first the Hamiltonian formalism 
in R x T*Q and then 'pulling-back' the results to R x TQ. This approach considers the 
Hamiltonian formalism as a more fundamental one due to the fact that the cotangent 
bundle T*Q of the configuration space Q carries a natural symplectic structure w o .  

(ii) The tangent bundle geometry has no natural symplectic structure, but instead 
possesses and induces in R x TQ (Crampin et a1 1984, Carifiena and Martinez 1989) 
two important geometrical objects: the Liouville vector field A and the (l,l)-tensor 
field S ;  so, the 'direct' approach is constructed using the actions of A and S. 

In terms of local coordinates { 1, q',  U'; i = 1, .  . . , n}, A and S have the form 

A = U' a / a u '  (1) 

S=a/au '@(dq '  -U' dt).  (2) 

We will use the notation S" instead of S when it acts on h ' ( R  x TQ). 

2.2. Product structure of the evolution space 

A vector field defined in R x TQ is said to be 'vertical' (with respect to T ~ )  if its value 
at any point (1, m )  E R x TQ is tangent to the fibre T; ' (  m).  The product structure of 
R x TQ and the natural chart for R will permit us to define a vector field a / a t  that 
gives a basis for the C"(R x TQ)-module of 'vertical' vector fields. Also, the 1-form 
dt  defines a 2n-dimensional distribution that will be called 'horizontal'; thus a 'horizon- 
tal' vector field will be a vector field that takes values on that distribution. We will 
denote by EH(R x TQ) the set of such vector fields: 

(3) 
In a similar way a 1-form a E A'(R x TQ) is called 'semibasic' (with respect to nz) 

if the contraction of (Y with any vertical vector field vanishes, i.e. i(a/at)a = 0. We will 
denote by &(R x TQ) the set of such 1-forms: 

(4) 

Given a 1-form a E A'(R x TQ),  we will denote by aSb the semibasic part of a, i.e. 

E H ( R  x TQ) = { X  E 2 ( R  x TQ)/(dt, X )  = 0) .  

&(R x TQ) = {(Y E A ' ( R  x T Q ) / ( ~ ,  a l a r )  = 0) .  

aSb=  a - [ i ( d / a t ) a ]  dt. ( 5 )  
In particular, if FE  C"(Rx TQ),  then the semibasic differential of F will be the 
semibasic 1-form dsbF defined by 

(6) dSbF = d F  - [i(a/dt)dF] d!. 
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3. Time-dependent Lagrangian formalism 

Suppose that a Lagrangian is given, i.e. a differentiable function L on R x  TQ. Then 
one can construct a 2-form @,E A2(R x TQ) and an energy function EL€ C"(R x TQ) 
by 

W L  = -de, e,= [S*(dL)Isb (7) 

EL= A (  L )  - L. (8) 

If L is a regular Lagrangian then (R x TQ, wL) is a contact manifold; i.e. R x TQ 
is an odd-dimensional manifold and the closed 2-form wL is of maximal rank. The 
proof is as follows. If a vector field 2 is 

2 = a ' (  t, q, v ) d / a q '  + b'( t, 9, v ) d / a v '  + C( t ,  q, v ) a / d t  

in terms of local coordinates, then i ( Z ) w ,  = 0 becomes 

(uk,-u, , )ak-W,kbk--C=O (9a) 

W1,ak = 0 (9b) 

v,ak = 0 (9c) 

where 

W'k =a2L/av'auh U,, = a2L/au'aqk V,  = a2L/av'at. 

So if L is regular, which is to say that the matrix W = [ W,,] is non-singular, then the 
only solution of (9b) is the trivial one a'  = 0, i = 1,. . . , n. Therefore, in this case, ( 9 b )  
and (9c) vanish and (9a) determines every one of the n coefficients bk as linear 
functions of c. Thus 2 must have the form 

Z = c i  i = - wklv, a / a u k  + a l a r  

with W" W,, = S i ,  and consequently Ker wL is one dimensional. 
Notice that the concept of contact structure is presented according to Abraham 

and Marsden (1978); nevertheless, other authors used the terms almost-contact structure 
and contact structure to denote what are here called contact structure and exact contact 
structure, respectively; see, e.g., Lichnerowicz (1976) and Albert (1988). 

The vector field X ,  giving the dynamics is obtained by solving the equation 

i (X)i lL = 0 (10) 

where 

ilL = wL + dE, A dt. (11) 

If wL is of maximal rank then (R x TQ, Cl,) is also a contact manifold, i.e. dim(Ker Cl,) = 
1, and (10) will determine X up to a multiplicative function. The Euler-Lagrange 
vector field XL is then determined by adding to (10) the condition (dt, X , ) =  1, and 
then the solution will turn out to be a second-order differential (SODE) vector field, i.e. 

(12) XL = u ' a l a q '  +Y( t, q, v ) a / a u '  +alar. 
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Notice that the notation 0, has been used (Crampin et a1 1984, Sarlet 1981, Sarlet 
and Cantrijn 1981, Carifiena and Martinez 1989) in other papers for the l-form 
S*(dL) + Ldt that here will be denoted as eE and defined by 

e E =  &-&dt. (13) 

This eE is such that R, = -de,. 
The above definition for 0, presents, in particular, two important properties: (i)  it 

has the same coordinate expression as the eL used in the time-independent formalism 
and (ii) the theory will clearly show a great similitude with the time-dependent 
Hamiltonian formalism, since the 0, so defined will correspond, when going to R x T*Q, 
to the g,, where e’, is the pull-back to R X  T*Q of the natural l-form eo defined in 
T*Q; i.e. 0, = Df( go) and w L  = Df(&) with D,: R x TQ + R x T*Q being the Legendre 
transformation. 

Proposition. Let X E 2Z (R x TQ) satisfy (dt, X) = 1. Then i (X)R,  = 0 is equivalent to 
[i(X)wLISb = dSbEL. 

Proof: (i) The property i(X)R,=O can be decomposed in two equations: one corre- 
sponding to the vanishing of the semibasic part and the other to the vanishing of the 
non-semibasic part: 

[ i(X)RL]sb= [ i ( X ) ~ , ] ~ ~ - d ’ ~ E , = 0  (14a) 

i(a/dt)[i(X)R,] = i(a/at>[i(X)o,]+i(X) dsbEL= 0. (146) 

Therefore it follows that if i(X)fL, = 0 then 

[i(X)wLISb = dSbE,. 

but it is a consequence of (14a). 
(i i)  In order to prove the converse, we will show that (146) is not itself independent, 

Let us suppose that 

[i(x)n,Isb = 0. 

Then 

i(X){i(X)wL-[i(d/dt)(X)wL] dt)- i (X) d”E,= 0 

and, using i(X)i(X)wL = 0 and i(X)dt = 1, we have 

i(a/Jt)i(X)w,+i(X) dSbEL = 0. 

Therefore if [ i (X)wLIsb  = d”E, then i (X)RL= 0. U 

For autonomous systems, the geometric version of the Euler-Lagrange equations 
can be written in two equivalent ways; i.e. if L :  TQ+ R then a vector field X E a( TQ) 
is a solution of i(X)o, = dEL if and only if it satisfies LxOL = dL, where Lx denotes 
the Lie derivative with respect to X. The following proposition proves, using the 
approach of semibasic forms, a similar result for time-dependent systems. 

Proposition. Let X E F ( R  x TQ) satisfy (dt, X) = 1. Then i (X)RL = 0 is equivalent to 
(LXeL)Sb = dSbL and S(X) = 0. 
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Proof (i) Let us suppose that i ( X ) a L  = 0, then the 2-form oL and the energy function 
EL will satisfy 

i(X)wL A d t  = dEL A dt  

and taking into account 

i (X)oL = -i(X) deL dEL = d[i(X)OL - L] 

we get 

LxOL A d t  = dL A d t  

which can be rewritten in a different but equivalent way as 

(LXOL)sb = d"L. 

Notice that property E L  = i( X )  O L  - L is true because X is a SODE vector field. 
(ii) Conversely, let us assume (LXOL)Sb = dsbL, then 

LxOL A d t  = dL A dt. 

Now, using S ( X )  = 0 we can write 

LxOL=dE,+i(X) dOL+dL 

and we arrive at 

[ i(X)oL] A d t  = dEL A d t  

and the equivalence is proved. U 

We finish this section with the following remark: if a l-form a is such that only 
involves the dq', i.e. a = a,(?, q, U )  dq', then ~~a E h l b  for any SODE vector field. 
Consequently the above equation ( LXOL)Sb = dSbL can be written directly as LXOL = dSbL. 

4. The inverse problem 

The Helmholtz conditions are a set of conditions (usually presented as four) or 
equations that permit us to indicate when a given set of second-order ordinary 
differential equations 

d2qi /dt2 = f ' ( t ,  q, U )  (15) 

are of Lagrangian class, i.e. that they are the Euler-Lagrange equations for some 
Lagrangian function L( t, q, U). It can be said that the Helmholtz conditions represent 
for the Lagrangian evolution a similar result to that represented by the Poisson bracket 
(PB) theorem (Saletan and Cromer 1971) for the Hamiltonian evolution. 

In recent years these conditions have been rewritten in a geometric language. First, 
in the autonomous case, Crampin (1981, 1983) presented the Helmholtz conditions as 
the conditions to be satisfied by a symplectic form w, and later Crampin et a1 (1984) 
generalised the theory to the time-dependent case as conditions to be satisfied by a 
contact form R (which will correspond to the aL). 
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The geometrical version of the PB theorem (Carifiena and Rafiada 1989) leads to 
the result that a dynamical vector field r defined in R x T*Q represents a time evolution 
of Hamiltonian class if (i) it preserves the 'horizontal' distribution EH(R x T*Q) and 
(ii) it satisfies (Lr x = 0 where Go is the pull-back to R x T*Q of the natural 
symplectic structure wo defined in T*Q. In the Lagrangian case we are studying now, 
the first of these two properties becomes trivial since the dynamical vector field X 
defined in R x  TQ is supposed to be SODE, and a SODE vector field always preserves 
EH(R x TQ). The following theorem studies the inverse problem of the time-dependent 
Lagrangian mechanics using the language of semibasic forms and, as we will see, it 
corresponds to the Lagrangian version of the second of the above two properties of 
the geometrical PB theorem. 

Theorem. Let X be a vector field defined in R x TQ. Then if X satisfies S ( X )  = 0 and 
(dt, X ) =  1, necessary and sufficient conditions for X to be such that it represents an 
evolution of Lagrangian class are the existence of a 2-form w on R x TQ such that 

(c l )  w is closed and such that W "  A d t  is a volume element 
(c2) w ( a / a u i ,  a / a u ' )  = o 
(c3) w(a/aui ,  a / a t )  = 0 

i, j = 1, .  . . , n 
i =  1, .  . . , n 

(c4) ( Lxwyb = 0. 

Boo$ First notice that (c2) and (c3) can be grouped as the single condition w (  VI, V,) = 
0, where VI,  V, denote any coupled 7-vertical vector fields. 

Condition (c l )  implies the local existence of a 1-form $ such that w = d$. Clearly 
this l-form will not be unique, so we will denote by Rf, the set of such l-forms: 

A: = ( 4  E A'(R x TQ)/d$ = w } .  

For the proof of the theorem we need the following lemma. 

Lemma. Let w be a 2-form that satisfies the conditions (cl ) ,  (c2) and (c3). Then in 
the associated set Af, there is at least a l-form, which will be denoted by 8, such that 

(i)  i(a/au')e = o 
( i i )  i (a/at)e = 0. 

i =  1, .  . . , n 

Proo$ Let $ be any arbitrary l-form in hf, with a local expression 

$== , ( t , q ,u )dq '+P , ( t , q ,  u )dv '+y( t , q ,  v)dt.  

Then conditions (c2) and (c3) mean that the coefficients p, and y must satisfy the 
following relations: 

ap , /avJ  = ap,/av' 

and consequently they must take the values 

P I  = a f ' / a u ' + p ' , ( q )  

ap,/pt = ay /av '  

Y = af ' / a t  + 3 t, 4 )  

where f' = f ' ( f ,  q, U )  is a differentiable function. Therefore the coordinate expression 
for any $ in  A: will have the form 

$ = a ,  dq'+(df ' /au '+f i , )  d u ' + ( a f ' / a r + j )  dr. 
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Now let us denote by 8 the l-form defined by 

e=$-df  

where the function f is given by f = f + f 2 +  f with 

f Z =  1 T ( t ,  4 )  dt  f' = &q)v ' .  

This new l-form is such that d e  = dJ, = w, and besides it satisfies i(a/at)e = 0 and 
0 i(a/au')e = 0, i = 1, .  . . , n. 

The proof of the lemma is now done, so we can proceed to the theorem. 

First notice that if w" A dt  # 0 then a vector field X such that S ( X )  = 0 and (dt, X )  = 1 

The condition (c4) can be rewritten as 
cannot be a characteristic vector field of w, i.e. i ( X ) w  # 0. 

[d(LxO)Isb = 0 

or, in an equivalent way, 

d(Lx8) = S A dt 

where 6 must be such that 6 A dt  is closed. 
Let a be a l-form such that a A dt is closed, then it follows that a = ai + a2 with 

a ,  and u2 such that d a ,  = 0 and d a 2  = /3 A dt. In the case of 6 this implies the existence 
of functions L and z such that 

Lx8 = d L + z  dt. U 

Remarks. (i) Actually a , = d F  and a 2 = P ( t , q , u ) d t + y i ( t ) d q i + 5 i ( t ) d u i  in such a 
way that L = F + yiqi + &vi and z = P - y / q i  + 5 1 ~ ' .  

(ii) Recall that if a l-form a is such that it only involves the dq', i.e. a = a i  dq', 
then Lxa E &. Thus the two functions z and L must be related by z = -aL/dt. 

We have arrived at the existence of a function L such that (LX8)'" = d"L. The 
function L turns out to be a (local) Lagrangian for the dynamical vector field X. Indeed 
we will show that the l-form 8, whose existence is guaranteed by the previous lemma, 
is really the l-form 

A general property of the l-forms involving only the dq', i.e. a = ai dq', is that they 
satisfy 

associated with L. 

a = [s*(Lya)Isb 

for any vector field Y such that i(a/aqi)  Y = U', i = 1, . . . , n; so using this for the 8 and 
the X we have 

8 = [ s*( ~ ~ e ) ] ~ ~  
= [S*(dL)Isb 

which completes the proof. 

such that i (X)O = 0 is given by 0 = w + i ( X ) w  A dt. 
As a final comment let us notice that, once we know the w, then the associated R 
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